Digital ASIC Fabrication

uGorP U

sdmay26-24

Colin McGann (Project Lead)

Dawud Benedict (Toolflow)

Michael Drobot (Firmware)

Jack Tonn (Testbench and Validation)

Team Members

Samual Forde (PCB and Layout)

Emil Kosic (Repo and Coding Standards)

= Joshua Arceo (Client/Advisor Communications)

Rasterized Vector
Triangle

= Design a digital ASIC for fabrication, using
the ChipForge toolchain

_ = QOur project: A programmable 3D raster GPU

o Output resolution: 320x240

o Frame rate: 15Hz (minimum)

o Output type: VGA

Design

o Programmability means we support other GPU

Overview tasks:

ray tracing, ML, GPU compute, etc

= QOur users: ChipForge members, ISU faculty,
embedded GPU users

= Effective budget of only $45,000

_ = Our GPU will be a low power alternative to modern GPUs

= Our GPU must be modifiable

o Configurable Resolution & Refresh Rate
o Must feature debug registers in critical sections

F Uun Ct| OoNa ||ty o Must be able to take commands from an outside source

" The GPU will well documented, with a datasheet and a
user guide

o C code drivers will be included, along with an example
project drawing triangles to the screen.

Inputs and

Outputs

Vertices and Connectivity

Vertex Shader Program

Rasterizer

Fragment Shader Program

VGA Output

Screen

Placing objects in the
world and projecting
them onto the screen

Checking visibility,
applying textures

Lighting, smoothing,
writing the frame

Detailed
Design

Processing Core Group

v

Myt a
cacha hers
as weill

Cores will complete either a vertex or
fragment computation dependent on
if their output buffer is full or input
buffer is empty. otherwise they wait

- |
b
v

e

The command system will be able to
dispaich cores to complete a render pass.
Each core will be assigned an x and y
coordinate depending on its focation in the
dispatch

= The cores run small assembly programs

called shaders, using our custom ISA
_ o Vertex shader: Placing objects in the scene

and projecting them into the screen

o Fragment shader: Applying lighting
= An ISA (instruction set architecture) is a set of basic
CO res an d |S A operations allowed and implemented in hardware

= Support basic operations like add, sub, addi, subi, mult,
dot product

= Instructions can access local registers (per core) and
global registers (shared to all cores)

= Instruction and word size of 32 bits

= We only have 10 square millimeters of area

= We have very few opportunities to silicon-prove our

Areas of designs
Con cern an d o The chips we get back may not work at full speed or

have hardware issues
Development

= There is a strict tapeout submission deadline

= The fabrication company could shut down

Questions?

	Slide 1: Digital ASIC Fabrication or µGPU
	Slide 2: Team Members
	Slide 3: Design Overview
	Slide 4: Functionality
	Slide 5: Inputs and Outputs
	Slide 6: Detailed Design
	Slide 7: Cores and ISA
	Slide 8: Areas of Concern and Development
	Slide 9: Questions?

